Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 43(7): 1199-1218, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37199159

RESUMO

BACKGROUND: Endothelial cells (ECs) are sensitive to physical forces created by blood flow, especially to laminar shear stress. Among the cell responses to laminar flow, EC polarization against the flow direction emerges as a key event, particularly during the development and remodeling of the vascular network. EC adopt an elongated planar cell shape with an asymmetrical distribution of intracellular organelles along the axis of blood flow. This study aimed to investigate the involvement of planar cell polarity via the receptor ROR2 (receptor tyrosine kinase-like orphan receptor 2) in endothelial responses to laminar shear stress. METHODS: We generated a genetic mouse model with EC-specific deletion of Ror2, in combination with in vitro approaches involving loss- and gain-of-function experiments. RESULTS: During the first 2 weeks of life, the endothelium of the mouse aorta undergoes a rapid remodeling associated with a loss of EC polarization against the flow direction. Notably, we found a correlation between ROR2 expression and endothelial polarization levels. Our findings demonstrate that deletion of Ror2 in murine ECs impaired their polarization during the postnatal development of the aorta. In vitro experiments further validated the essential role of ROR2 in both EC collective polarization and directed migration under laminar flow conditions. Exposure to laminar shear stress triggered the relocalization of ROR2 to cell-cell junctions where it formed a complex with VE-Cadherin and ß-catenin, thereby regulating adherens junctions remodeling at the rear and front poles of ECs. Finally, we showed that adherens junctions remodeling and cell polarity induced by ROR2 were dependent on the activation of the small GTPase Cdc42. CONCLUSIONS: This study identified ROR2/planar cell polarity pathway as a new mechanism controlling and coordinating collective polarity patterns of EC during shear stress response.


Assuntos
Células Endoteliais , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Camundongos , Animais , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Polaridade Celular/fisiologia , Endotélio Vascular/metabolismo , Junções Intercelulares , Estresse Mecânico
3.
Front Physiol ; 13: 906272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874523

RESUMO

Heart failure with preserved ejection fraction (HFpEF) has been recognized as the greatest single unmet need in cardiovascular medicine. Indeed, the morbi-mortality of HFpEF is high and as the population ages and the comorbidities increase, so considerably does the prevalence of HFpEF. However, HFpEF pathophysiology is still poorly understood and therapeutic targets are missing. An unifying, but untested, theory of the pathophysiology of HFpEF, proposed in 2013, suggests that cardiovascular risk factors lead to a systemic inflammation, which triggers endothelial cells (EC) and coronary microvascular dysfunction. This cardiac small vessel disease is proposed to be responsible for cardiac wall stiffening and diastolic dysfunction. This paradigm is based on the fact that microvascular dysfunction is highly prevalent in HFpEF patients. More specifically, HFpEF patients have been shown to have decreased cardiac microvascular density, systemic endothelial dysfunction and a lower mean coronary flow reserve. Importantly, impaired coronary microvascular function has been associated with the severity of HF. This review discusses evidence supporting the causal role of endothelial dysfunction in the pathophysiology of HFpEF in human and experimental models.

4.
Arterioscler Thromb Vasc Biol ; 42(6): 745-763, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35510550

RESUMO

BACKGROUND: While endothelial dysfunction is suggested to contribute to heart failure with preserved ejection fraction pathophysiology, understanding the importance of the endothelium alone, in the pathogenesis of diastolic abnormalities has not yet been fully elucidated. Here, we investigated the consequences of specific endothelial dysfunction on cardiac function, independently of any comorbidity or risk factor (diabetes or obesity) and their potential effect on cardiomyocyte. METHODS: The ubiquitine ligase Pdzrn3, expressed in endothelial cells (ECs), was shown to destabilize tight junction. A genetic mouse model in which Pdzrn3 is overexpressed in EC (iEC-Pdzrn3) in adults was developed. RESULTS: EC-specific Pdzrn3 expression increased cardiac leakage of IgG and fibrinogen blood-born molecules. The induced edema demonstrated features of diastolic dysfunction, with increased end-diastolic pressure, alteration of dP/dt min, increased natriuretic peptides, in addition to limited exercise capacity, without major signs of cardiac fibrosis and inflammation. Electron microscopic images showed edema with disrupted EC-cardiomyocyte interactions. RNA sequencing analysis of gene expression in cardiac EC demonstrated a decrease in genes coding for endothelial extracellular matrix proteins, which could be related to the fragile blood vessel phenotype. Irregularly shaped capillaries with hemorrhages were found in heart sections of iEC-Pdzrn3 mice. We also found that a high-fat diet was not sufficient to provoke diastolic dysfunction; high-fat diet aggravated cardiac inflammation, associated with an altered cardiac metabolic signature in EC-Pdzrn3 mice, reminiscent of heart failure with preserved ejection fraction features. CONCLUSIONS: An increase of endothelial permeability is responsible for mediating diastolic dysfunction pathophysiology and for aggravating detrimental effects of a high-fat diet on cardiac inflammation and metabolism.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Animais , Permeabilidade Capilar , Células Endoteliais/metabolismo , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Inflamação/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Volume Sistólico/fisiologia , Ubiquitina-Proteína Ligases
5.
Brain ; 145(6): 1992-2007, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35511193

RESUMO

Cerebral small vessel disease is a leading cause of stroke and a major contributor to cognitive decline and dementia, but our understanding of specific genes underlying the cause of sporadic cerebral small vessel disease is limited. We report a genome-wide association study and a whole-exome association study on a composite extreme phenotype of cerebral small vessel disease derived from its most common MRI features: white matter hyperintensities and lacunes. Seventeen population-based cohorts of older persons with MRI measurements and genome-wide genotyping (n = 41 326), whole-exome sequencing (n = 15 965), or exome chip (n = 5249) data contributed 13 776 and 7079 extreme small vessel disease samples for the genome-wide association study and whole-exome association study, respectively. The genome-wide association study identified significant association of common variants in 11 loci with extreme small vessel disease, of which the chr12q24.11 locus was not previously reported to be associated with any MRI marker of cerebral small vessel disease. The whole-exome association study identified significant associations of extreme small vessel disease with common variants in the 5' UTR region of EFEMP1 (chr2p16.1) and one probably damaging common missense variant in TRIM47 (chr17q25.1). Mendelian randomization supports the causal association of extensive small vessel disease severity with increased risk of stroke and Alzheimer's disease. Combined evidence from summary-based Mendelian randomization studies and profiling of human loss-of-function allele carriers showed an inverse relation between TRIM47 expression in the brain and blood vessels and extensive small vessel disease severity. We observed significant enrichment of Trim47 in isolated brain vessel preparations compared to total brain fraction in mice, in line with the literature showing Trim47 enrichment in brain endothelial cells at single cell level. Functional evaluation of TRIM47 by small interfering RNAs-mediated knockdown in human brain endothelial cells showed increased endothelial permeability, an important hallmark of cerebral small vessel disease pathology. Overall, our comprehensive gene-mapping study and preliminary functional evaluation suggests a putative role of TRIM47 in the pathophysiology of cerebral small vessel disease, making it an important candidate for extensive in vivo explorations and future translational work.


Assuntos
Isquemia Encefálica , Doenças de Pequenos Vasos Cerebrais , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/complicações , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/genética , Células Endoteliais/patologia , Estudo de Associação Genômica Ampla , Camundongos , Acidente Vascular Cerebral/complicações
6.
Arterioscler Thromb Vasc Biol ; 42(5): 597-609, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35387477

RESUMO

BACKGROUND: Genome-wide association studies have revealed robust associations of common genetic polymorphisms in an intron of the PHACTR-1 (phosphatase and actin regulator 1) gene (chr6p24), with cervical artery dissection, spontaneous coronary artery dissection, and fibromuscular dysplasia. The aim was to assess its role in the pathogenesis of cervical artery dissection or fibromuscular dysplasia. METHODS: Using various tissue-specific Cre-driver mouse lines, Phactr1 was deleted either in endothelial cells using 2 tissue-specific Cre-driver (PDGFB [platelet-derived growth factor B]-CreERT2 mice and Tie2 [tyrosine kinase with immunoglobulin and EGF homology domains]-Cre) and smooth muscle cells (smooth muscle actin-CreERT2) with a third tissue-specific Cre-driver. RESULTS: To test the efficacy of the Phactr1 deletion after cre-induction, we confirmed first, a decrease in Phactr1 transcription and Phactr1 expression in endothelial cell and smooth muscle cell isolated from Phactr1iPDGFB and Phactr1iSMA mice. Irrespective to the tissue or the duration of the deletion, mice did not spontaneously display pathological phenotype or vascular impairment: mouse survival, growth, blood pressure, large vessel morphology, or actin organization were not different in knockout mice than their comparatives littermates. Challenging vascular function and repair either by angiotensin II-induced hypertension or limb ischemia did not lead to vascular morphology or function impairment in Phactr1-deleted mice. Similarly, there were no more consequences of Phactr1 deletion during embryogenesis in endothelial cells. CONCLUSIONS: Loss of PHACTR-1 function in the cells involved in vascular physiology does not appear to induce a pathological vascular phenotype. The in vivo effect of the intronic variation described in genome-wide association studies is unlikely to involve downregulation in PHACTR-1 expression.


Assuntos
Actinas , Arteriopatias Oclusivas/metabolismo , Displasia Fibromuscular , Proteínas dos Microfilamentos/metabolismo , Actinas/metabolismo , Animais , Células Endoteliais/metabolismo , Displasia Fibromuscular/genética , Estudo de Associação Genômica Ampla , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Miócitos de Músculo Liso/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-35074794

RESUMO

The Wnt/frizzled signaling pathway is one of the major regulators of endothelial biology, controlling key cellular activities. Many secreted Wnt ligands have been identified and can initiate diverse signaling via binding to a complex set of Frizzled (Fzd) transmembrane receptors and coreceptors. Roughly, Wnt signaling is subdivided into two pathways: the canonical Wnt/ß-catenin signaling pathway whose main downstream effector is the transcriptional coactivator ß-catenin, and the noncanonical Wnt signaling pathway, which is subdivided into the Wnt/Ca2+ pathway and the planar cell polarity pathway. Here, we will focus on its cross talk with other angiogenic pathways and on its role in blood-retinal- and blood-brain-barrier formation and its maintenance in a differentiated state. We will unravel how retinal vascular pathologies and neurovascular degenerative diseases result from disruption of the Wnt pathway related to vascular instability, and highlight current research into therapeutic options.


Assuntos
Barreira Hematoencefálica , Via de Sinalização Wnt , Endotélio , Receptores Frizzled , Humanos , Ligantes
8.
Sci Rep ; 12(1): 8, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996942

RESUMO

Heart failure is the final common stage of most cardiopathies. Cardiomyocytes (CM) connect with others via their extremities by intercalated disk protein complexes. This planar and directional organization of myocytes is crucial for mechanical coupling and anisotropic conduction of the electric signal in the heart. One of the hallmarks of heart failure is alterations in the contact sites between CM. Yet no factor on its own is known to coordinate CM polarized organization. We have previously shown that PDZRN3, an ubiquitine ligase E3 expressed in various tissues including the heart, mediates a branch of the Planar cell polarity (PCP) signaling involved in tissue patterning, instructing cell polarity and cell polar organization within a tissue. PDZRN3 is expressed in the embryonic mouse heart then its expression dropped significantly postnatally corresponding with heart maturation and CM polarized elongation. A moderate CM overexpression of Pdzrn3 (Pdzrn3 OE) during the first week of life, induced a severe eccentric hypertrophic phenotype with heart failure. In models of pressure-overload stress heart failure, CM-specific Pdzrn3 knockout showed complete protection against degradation of heart function. We reported that Pdzrn3 signaling induced PKC ζ expression, c-Jun nuclear translocation and a reduced nuclear ß catenin level, consistent markers of the planar non-canonical Wnt signaling in CM. We then show that subcellular localization (intercalated disk) of junction proteins as Cx43, ZO1 and Desmoglein 2 was altered in Pdzrn3 OE mice, which provides a molecular explanation for impaired CM polarization in these mice. Our results reveal a novel signaling pathway that controls a genetic program essential for heart maturation and maintenance of overall geometry, as well as the contractile function of CM, and implicates PDZRN3 as a potential therapeutic target for the prevention of human heart failure.


Assuntos
Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/prevenção & controle , Coração/crescimento & desenvolvimento , Ubiquitina-Proteína Ligases/metabolismo , Animais , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , beta Catenina/genética , beta Catenina/metabolismo
9.
J Cereb Blood Flow Metab ; 42(4): 613-629, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34644209

RESUMO

Blood brain barrier (BBB) disruption is a critical component of the pathophysiology of cognitive impairment of vascular etiology (VCI) and associated with Alzheimer's disease (AD). The Wnt pathway plays a crucial role in BBB maintenance, but there is limited data on its role in cognitive pathologies. The E3 ubiquitin ligase PDZRN3 is a regulator of the Wnt pathway. In a murine model of VCI, overexpressing Pdzrn3 in endothelial cell (EC) exacerbated BBB hyperpermeability and accelerated cognitive decline. We extended these observations, in both VCI and AD models, showing that EC-specific depletion of Pdzrn3, reinforced the BBB, with a decrease in vascular permeability and a subsequent spare in cognitive decline. We found that in cerebral vessels, Pdzrn3 depletion protects against AD-induced Wnt target gene alterations and enhances endothelial tight junctional proteins. Our results provide evidence that Wnt signaling could be a molecular link regulating BBB integrity and cognitive decline under VCI and AD pathologies.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Ubiquitina-Proteína Ligases , Doença de Alzheimer/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Células Endoteliais/metabolismo , Homeostase , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
FASEB J ; 34(1): 1288-1303, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914666

RESUMO

Retinopathies remain major causes of visual impairment in diabetic patients and premature infants. Introduction of anti-angiogenic drugs targeting vascular endothelial growth factor (VEGF) has transformed therapy for these proliferative retinopathies. However, limitations associated with anti-VEGF medications require to unravel new pathways of vessel growth to identify potential drug targets. Here, we investigated the role of Wnt/Frizzled-7 (Fzd7) pathway in a mouse model of oxygen-induced retinopathy (OIR). Using transgenic mice, which enabled endothelium-specific and time-specific Fzd7 deletion, we demonstrated that Fzd7 controls both vaso-obliteration and neovascular phases (NV). Deletion of Fzd7 at P12, after the ischemic phase of OIR, prevented formation of aberrant neovessels into the vitreous by suppressing proliferation of endothelial cells (EC) in tufts. Next we validated in vitro two Frd7 blocking strategies: a monoclonal antibody (mAbFzd7) against Fzd7 and a soluble Fzd7 receptor (CRD). In vivo a single intravitreal microinjection of mAbFzd7 or CRD significantly attenuated retinal neovascularization (NV) in mice with OIR. Molecular analysis revealed that Fzd7 may act through the activation of Wnt/ß-catenin and Jagged1 expression to control EC proliferation in extra-retinal neovessels. We identified Fzd7/ß-catenin signaling as new regulator of pathological retinal NV. Fzd7 appears to be a potent pharmacological target to prevent or treat aberrant angiogenesis of ischemic retinopathies.


Assuntos
Retinopatia Diabética/metabolismo , Isquemia/metabolismo , Proteínas Repressoras/metabolismo , Neovascularização Retiniana/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Deleção de Genes , Isquemia/genética , Isquemia/patologia , Proteína Jagged-1/biossíntese , Proteína Jagged-1/genética , Camundongos , Camundongos Mutantes , Proteínas Repressoras/genética , Neovascularização Retiniana/genética , Neovascularização Retiniana/patologia , beta Catenina/genética
11.
J Thromb Haemost ; 17(5): 827-840, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30801958

RESUMO

Essentials To reliably study the respective roles of blood and endothelial cells in hemostasis, mouse models with a strong and specific endothelial expression of the Cre recombinase are needed. Using mT/mG reporter mice and conditional JAK2V617F/WT mice, we compared Pdgfb-iCreERT2 and Cdh5(PAC)-CreERT2 with well-characterized Tie2-Cre mice. Comparison of recombination efficiency and specificity towards blood lineage reveals major differences between endothelial transgenic mice. Cre-mediated recombination occurs in a small number of adult hematopoietic stem cells in Pdgfb-iCreERT2;JAK2V617F/WT transgenic mice. SUMMARY: Background The vessel wall, and particularly blood endothelial cells (BECs), are intensively studied to better understand hemostasis and target thrombosis. To understand the specific role of BECs, it is important to have mouse models that allow specific and homogeneous expression of genes of interest in all BEC beds without concomitant expression in blood cells. Inducible Pdgfb-iCreERT2 and Cdh5(PAC)-CreERT2 transgenic mice are widely used for BEC targeting. However, issues remain in terms of recombination efficiency and specificity regarding hematopoietic cells. Objectives To determine which mouse model to choose when strong expression of a transgene is required in adult BECs from various organs, without concomitant expression in hematopoietic cells. Methods Using mT/mG reporter mice to measure recombination efficiency and conditional JAK2V617F/WT mice to assess specificity regarding hematopoietic cells, we compared Pdgfb-iCreERT2 and Cdh5(PAC)-CreERT2 with well-characterized Tie2-Cre mice. Results Adult Cdh5(PAC)-CreERT2 mice are endothelial specific but require a dose of 10 mg of tamoxifen to allow constant Cre expression. Pdgfb-iCreERT2 mice injected with 5 mg of tamoxifen are appropriate for most endothelial research fields except liver studies, as hepatic sinusoid ECs are not recombined. Surprisingly, 2 months after induction of Cre-mediated recombination, all Pdgfb-iCreERT2;JAK2V617F/WT mice developed a myeloproliferative neoplasm that is related to the presence of JAK2V617F in hematopoietic cells, showing for the first time that Cre-mediated recombination occurs in a small number of adult hematopoietic stem cells in Pdgfb-iCreERT2 transgenic mice. Conclusion This study provides useful guidelines for choosing the best mouse line to study the role of BECs in hemostasis and thrombosis.


Assuntos
Células Endoteliais/citologia , Células-Tronco Hematopoéticas/citologia , Linfocinas/genética , Linfocinas/metabolismo , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Alelos , Animais , Encéfalo/metabolismo , Hemostasia , Integrases/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Reação em Cadeia da Polimerase , Retina/metabolismo , Tamoxifeno/farmacologia , Trombose/metabolismo
12.
Haematologica ; 104(1): 70-81, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171023

RESUMO

Thrombosis is the main cause of morbidity and mortality in patients with JAK2V617F myeloproliferative neoplasms. Recent studies have reported the presence of JAK2V617F in endothelial cells of some patients with myeloproliferative neoplasms. We investigated the role of endothelial cells that express JAK2V617F in thrombus formation using an in vitro model of human endothelial cells overexpressing JAK2V617F and an in vivo model of mice with endothelial-specific JAK2V617F expression. Interestingly, these mice displayed a higher propensity for thrombus. When deciphering the mechanisms by which JAK2V617F-expressing endothelial cells promote thrombosis, we observed that they have a pro-adhesive phenotype associated with increased endothelial P-selectin exposure, secondary to degranulation of Weibel-Palade bodies. We demonstrated that P-selectin blockade was sufficient to reduce the increased propensity of thrombosis. Moreover, treatment with hydroxyurea also reduced thrombosis and decreased the pathological interaction between leukocytes and JAK2V617F-expressing endothelial cells through direct reduction of endothelial P-selectin expression. Taken together, our data provide evidence that JAK2V617F-expressing endothelial cells promote thrombosis through induction of endothelial P-selectin expression, which can be reversed by hydroxyurea. Our findings increase our understanding of thrombosis in patients with myeloproliferative neoplasms, at least those with JAK2V617F-positive endothelial cells, and highlight a new role for hydroxyurea. This novel finding provides the proof of concept that an acquired genetic mutation can affect the pro-thrombotic nature of endothelial cells, suggesting that other mutations in endothelial cells could be causal in thrombotic disorders of unknown cause, which account for 50% of recurrent venous thromboses.


Assuntos
Células Endoteliais/metabolismo , Janus Quinase 2/biossíntese , Selectina-P/biossíntese , Trombose/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxiureia/farmacologia , Janus Quinase 2/genética , Camundongos , Camundongos Transgênicos , Selectina-P/genética , Trombose/tratamento farmacológico , Trombose/genética , Trombose/patologia
13.
PLoS One ; 12(3): e0171033, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28253274

RESUMO

Quantitative analysis of the vascular network anatomy is critical for the understanding of the vasculature structure and function. In this study, we have combined microcomputed tomography (microCT) and computational analysis to provide quantitative three-dimensional geometrical and topological characterization of the normal kidney vasculature, and to investigate how 2 core genes of the Wnt/planar cell polarity, Frizzled4 and Frizzled6, affect vascular network morphogenesis. Experiments were performed on frizzled4 (Fzd4-/-) and frizzled6 (Fzd6-/-) deleted mice and littermate controls (WT) perfused with a contrast medium after euthanasia and exsanguination. The kidneys were scanned with a high-resolution (16 µm) microCT imaging system, followed by 3D reconstruction of the arterial vasculature. Computational treatment includes decomposition of 3D networks based on Diameter-Defined Strahler Order (DDSO). We have calculated quantitative (i) Global scale parameters, such as the volume of the vasculature and its fractal dimension (ii) Structural parameters depending on the DDSO hierarchical levels such as hierarchical ordering, diameter, length and branching angles of the vessel segments, and (iii) Functional parameters such as estimated resistance to blood flow alongside the vascular tree and average density of terminal arterioles. In normal kidneys, fractal dimension was 2.07±0.11 (n = 7), and was significantly lower in Fzd4-/- (1.71±0.04; n = 4), and Fzd6-/- (1.54±0.09; n = 3) kidneys. The DDSO number was 5 in WT and Fzd4-/-, and only 4 in Fzd6-/-. Scaling characteristics such as diameter and length of vessel segments were altered in mutants, whereas bifurcation angles were not different from WT. Fzd4 and Fzd6 deletion increased vessel resistance, calculated using the Hagen-Poiseuille equation, for each DDSO, and decreased the density and the homogeneity of the distal vessel segments. Our results show that our methodology is suitable for 3D quantitative characterization of vascular networks, and that Fzd4 and Fzd6 genes have a deep patterning effect on arterial vessel morphogenesis that may determine its functional efficiency.


Assuntos
Artérias/crescimento & desenvolvimento , Polaridade Celular/genética , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Morfogênese/genética , Animais , Artérias/anatomia & histologia , Artérias/diagnóstico por imagem , Artérias/fisiologia , Camundongos , Neovascularização Fisiológica , Microtomografia por Raio-X
14.
Biochim Biophys Acta Mol Cell Res ; 1864(7): 1142-1152, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28322931

RESUMO

The GC-rich Binding Factor 2/Leucine Rich Repeat in the Flightless 1 Interaction Protein 1 gene (GCF2/LRRFIP1) is predicted to be alternatively spliced in five different isoforms. Although important peptide sequence differences are expected to result from this alternative splicing, to date, only the gene transcription regulator properties of LRRFIP1-Iso5 were unveiled. Based on molecular, cellular and biochemical data, we show here that the five isoforms define two molecular entities with different expression profiles in human tissues, subcellular localizations, oligomerization properties and transcription enhancer properties of the canonical Wnt pathway. We demonstrated that LRRFIP1-Iso3, -4 and -5, which share over 80% sequence identity, are primarily located in the cell cytoplasm and form homo and hetero-multimers between each other. In contrast, LRRFIP1-Iso1 and -2 are primarily located in the cell nucleus in part thanks to their shared C-terminal domain. Furthermore, we showed that LRRFIP1-Iso1 is preferentially expressed in the myocardium and skeletal muscle. Using the in vitro Topflash reporter assay we revealed that among LRRFIP1 isoforms, LRRFIP1-Iso1 is the strongest enhancer of the ß-catenin Wnt canonical transcription pathway thanks to a specific N-terminal domain harboring two critical tryptophan residues (W76, 82). In addition, we showed that the Wnt enhancer properties of LRRFIP1-Iso1 depend on its homo-dimerisation which is governed by its specific coiled coil domain. Together our study identified LRRFIP1-Iso1 as a critical regulator of the Wnt canonical pathway with a potential role in myocyte differentiation and myogenesis.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Via de Sinalização Wnt , Processamento Alternativo , Animais , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Ratos , Ratos Sprague-Dawley , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
15.
Sci Signal ; 10(464)2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28143902

RESUMO

Endothelial cells serve as a barrier between blood and tissues. Maintenance of the endothelial cell barrier depends on the integrity of intercellular junctions, which is regulated by a polarity complex that includes the ζ isoform of atypical protein kinase C (PKCζ) and partitioning defective 3 (PAR3). We revealed that the E3 ubiquitin ligase PDZ domain-containing ring finger 3 (PDZRN3) regulated endothelial intercellular junction integrity. Endothelial cell-specific overexpression of Pdzrn3 led to early embryonic lethality with severe hemorrhaging and altered organization of endothelial intercellular junctions. Conversely, endothelial-specific loss of Pdzrn3 prevented vascular leakage in a mouse model of transient ischemic stroke, an effect that was mimicked by pharmacological inhibition of PKCζ. PDZRN3 regulated Wnt signaling and associated with a complex containing PAR3, PKCζ, and the multi-PDZ domain protein MUPP1 (Discs Lost-multi-PDZ domain protein 1) and targeted MUPP1 for proteasomal degradation in transfected cells. Transient ischemic stroke increased the ubiquitination of MUPP1, and deficiency of MUPP1 in endothelial cells was associated with decreased localization of PKCζ and PAR3 at intercellular junctions. In endothelial cells, Pdzrn3 overexpression increased permeability through a PKCζ-dependent pathway. In contrast, Pdzrn3 depletion enhanced PKCζ accumulation at cell-cell contacts and reinforced the cortical actin cytoskeleton under stress conditions. These findings reveal how PDZRN3 regulates vascular permeability through a PKCζ-containing complex.


Assuntos
Permeabilidade Capilar , Células Endoteliais/metabolismo , Junções Intercelulares , Proteína Quinase C/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Encéfalo/irrigação sanguínea , Encéfalo/embriologia , Encéfalo/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Modelos Animais de Doenças , Embrião de Mamíferos/irrigação sanguínea , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Células Endoteliais/citologia , Humanos , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase C/genética , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Ubiquitina-Proteína Ligases/genética , Via de Sinalização Wnt/genética
16.
Arterioscler Thromb Vasc Biol ; 36(12): 2369-2380, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27758766

RESUMO

OBJECTIVE: Vessel formation requires precise orchestration of a series of morphometric and molecular events controlled by a multitude of angiogenic factors and morphogens. Wnt/frizzled signaling is required for proper vascular formation. In this study, we investigated the role of the Fzd7 (frizzled-7) receptor in retinal vascular development and its relationship with the Wnt/ß-catenin canonical pathway and Notch signaling. APPROACH AND RESULTS: Using transgenic mice, we demonstrated that Fzd7 is required for postnatal vascular formation. Endothelial cell (EC) deletion of fzd7 (fzd7ECKO) delayed retinal plexus formation because of an impairment in tip cell phenotype and a decrease in stalk cell proliferation. Dvl (dishevelled) proteins are a main component of Wnt signaling and play a functionally redundant role. We found that Dvl3 depletion in dvl1-/- mice mimicked the fzd7ECKO vascular phenotype and demonstrated that Fzd7 acted via ß-catenin activation by showing that LiCl treatment rescued impairment in tip and stalk cell phenotypes induced in fzd7 mutants. Deletion of fzd7 or Dvl1/3 induced a strong decrease in Wnt canonical genes and Notch partners' expression. Genetic and pharmacological rescue strategies demonstrated that Fzd7 acted via ß-catenin activation, upstream of Notch signaling to control Dll4 and Jagged1 EC expression. CONCLUSIONS: Fzd7 expressed by EC drives postnatal angiogenesis via activation of Dvl/ß-catenin signaling and can control the integrative interaction of Wnt and Notch signaling during postnatal angiogenesis.


Assuntos
Células Endoteliais/metabolismo , Neovascularização Fisiológica , Receptores Acoplados a Proteínas G/metabolismo , Neovascularização Retiniana/metabolismo , Vasos Retinianos/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio , Proliferação de Células , Células Cultivadas , Proteínas Desgrenhadas/deficiência , Proteínas Desgrenhadas/genética , Células Endoteliais/efeitos dos fármacos , Receptores Frizzled , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Jagged-1/metabolismo , Cloreto de Lítio/farmacologia , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica/efeitos dos fármacos , Fenótipo , Interferência de RNA , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Notch/metabolismo , Neovascularização Retiniana/genética , Neovascularização Retiniana/fisiopatologia , Vasos Retinianos/efeitos dos fármacos , Transfecção , Via de Sinalização Wnt/efeitos dos fármacos
17.
Mol Biol Cell ; 27(6): 941-53, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26792835

RESUMO

Angiogenesis involves the coordinated growth and migration of endothelial cells (ECs) toward a proangiogenic signal. The Wnt planar cell polarity (PCP) pathway, through the recruitment of Dishevelled (Dvl) and Dvl-associated activator of morphogenesis (Daam1), has been proposed to regulate cell actin cytoskeleton and microtubule (MT) reorganization for oriented cell migration. Here we report that Kif26b--a kinesin--and Daam1 cooperatively regulate initiation of EC sprouting and directional migration via MT reorganization. First, we find that Kif26b is recruited within the Dvl3/Daam1 complex. Using a three-dimensional in vitro angiogenesis assay, we show that Kif26b and Daam1 depletion impairs tip cell polarization and destabilizes extended vascular processes. Kif26b depletion specifically alters EC directional migration and mislocalized MT organizing center (MTOC)/Golgi and myosin IIB cell rear enrichment. Therefore the cell fails to establish a proper front-rear polarity. Of interest, Kif26b ectopic expression rescues the siDaam1 polarization defect phenotype. Finally, we show that Kif26b functions in MT stabilization, which is indispensable for asymmetrical cell structure reorganization. These data demonstrate that Kif26b, together with Dvl3/Daam1, initiates cell polarity through the control of PCP signaling pathway-dependent activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Polaridade Celular , Proteínas Desgrenhadas/metabolismo , Células Endoteliais/metabolismo , Cinesinas/metabolismo , Via de Sinalização Wnt , Animais , Movimento Celular , Células Endoteliais/fisiologia , Humanos , Camundongos , Proteínas dos Microfilamentos , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neovascularização Fisiológica , Proteínas rho de Ligação ao GTP
18.
Nat Commun ; 5: 4832, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25198863

RESUMO

Development and stabilization of a vascular plexus requires the coordination of multiple signalling processes. Wnt planar cell polarity (PCP) signalling is critical in vertebrates for diverse morphogenesis events, which coordinate cell orientation within a tissue-specific plane. However, its functional role in vascular morphogenesis is not well understood. Here we identify PDZRN3, an ubiquitin ligase, and report that Pdzrn3 deficiency impairs embryonic angiogenic remodelling and postnatal retinal vascular patterning, with a loss of two-dimensional polarized orientation of the intermediate retinal plexus. Using in vitro and ex vivo Pdzrn3 loss-of-function and gain-of-function experiments, we demonstrate a key role of PDZRN3 in endothelial cell directional and coordinated extension. PDZRN3 ubiquitinates Dishevelled 3 (Dvl3), to promote endocytosis of the Frizzled/Dvl3 complex, for PCP signal transduction. These results highlight the role of PDZRN3 to direct Wnt PCP signalling, and broadly implicate this pathway in the planar orientation and highly branched organization of vascular plexuses.


Assuntos
Vasos Sanguíneos/embriologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Morfogênese/genética , Neovascularização Fisiológica/genética , Ubiquitina-Proteína Ligases/genética , Via de Sinalização Wnt/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Vasos Sanguíneos/metabolismo , Polaridade Celular/genética , Proteínas Desgrenhadas , Endocitose , Receptores Frizzled/metabolismo , Camundongos , Camundongos Knockout , Fosfoproteínas/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Wnt/metabolismo
19.
Cardiovasc Res ; 103(2): 291-303, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24866384

RESUMO

AIMS: Vascular permeability is essential for the health of normal tissues and is an important characteristic of many disease states. The role of the Wnt/frizzled pathway in vascular biology has recently been reported. The objectives of this study are to analyse the role of Frizzled7 (Fzd7) receptor in the control of vascular integrity. METHODS AND RESULTS: Fzd7 is expressed in endothelial cells and accumulates at the points of cell-cell contact in association with VE-cadherin and ß-catenin, two major adherens junction molecules. To selectively delete fzd7 in the vasculature, we developed gene targeting approaches using CreLox strategy in mice. Genetic fzd7 inhibition in the endothelium increases vascular permeability in basal and factor-induced conditions. On the cellular level, fzd7 knockdown or depletion leads to an increase in paracellular permeability with a loss of adherens junction organization. These impairments are associated with a decrease in both VE-Cadherin and ß-catenin expression, a decrease in their association and an increase of tyrosine phosphorylation of VE-cadherin/ß-catenin. Fzd7 transduces a Wnt/ß-catenin signalling cascade that is required to regulate ß-catenin and canonical target gene expression. Finally, LiCl, a GSK3 inhibitor, and ß-catenin overexpression rescued endothelial integrity and adherens junction organization, induced by fzd7 deletion. CONCLUSION: These findings establish that Fzd7 is a new partner of adherens junctional complex and represents a novel molecular switch for the control of vascular permeability via activation of the Wnt-canonical pathway.


Assuntos
Caderinas/metabolismo , Permeabilidade Capilar/fisiologia , Células Endoteliais/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Comunicação Celular , Endotélio Vascular/metabolismo , Receptores Frizzled , Quinase 3 da Glicogênio Sintase/metabolismo , Junções Intercelulares/metabolismo , Camundongos , Camundongos Transgênicos , Transdução de Sinais/fisiologia , beta Catenina/metabolismo
20.
Circ Res ; 112(5): 762-70, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23343527

RESUMO

RATIONALE: Blood vessel growth and patterning have been shown to be regulated by nerve-derived signals. Desert hedgehog (Dhh), one of the Hedgehog family members, is expressed by Schwann cells of peripheral nerves. OBJECTIVE: The purpose of this study was to investigate the contribution of Dhh to angiogenesis in the setting of ischemia. METHODS AND RESULTS: We induced hindlimb ischemia in wild-type and Dhh(-/-) mice. First, we found that limb perfusion is significantly impaired in the absence of Dhh. This effect is associated with a significant decrease in capillary and artery density in Dhh(-/-). By using mice in which the Hedgehog signaling pathway effector Smoothened was specifically invalidated in endothelial cells, we demonstrated that Dhh does not promote angiogenesis by a direct activation of endothelial cells. On the contrary, we found that Dhh promotes peripheral nerve survival in the ischemic muscle and, by doing so, maintains the pool of nerve-derived proangiogenic factors. Consistently, we found that denervation of the leg, immediately after the onset of ischemia, severely impairs ischemia-induced angiogenesis and decreases expression of vascular endothelial growth factor A, angiopoietin 1, and neurotrophin 3 in the ischemic muscle. CONCLUSIONS: This study demonstrates the crucial roles of nerves and factors regulating nerve physiology in the setting of ischemia-induced angiogenesis.


Assuntos
Proteínas Hedgehog/fisiologia , Membro Posterior/irrigação sanguínea , Isquemia/fisiopatologia , Neovascularização Fisiológica/fisiologia , Nervos Periféricos/fisiologia , Angiopoietina-1/metabolismo , Animais , Sobrevivência Celular/fisiologia , Modelos Animais de Doenças , Proteínas Hedgehog/deficiência , Proteínas Hedgehog/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Denervação Muscular , Músculo Esquelético/inervação , Fatores de Crescimento Neural/metabolismo , Nervos Periféricos/citologia , Células de Schwann/citologia , Células de Schwann/fisiologia , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...